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Introduction

 CSEM has already demonstrated that graph neural networks (GNN) can * Also, In real situations input data Is imperfect affected by measurement
outperform the state of the art in forecasting photovoltaic production and transmission errors

* Up to now such approaches have only been able to handle data from a  The DIGERATI! project developed a forecasting solution based on
fixed network of sensors (nodes) to produce the desired forecasts dynamic graph machine learning to overcome these problems

 However, in real life, nodes can be frequently added or removed as new * An online demonstrator has been made to showcase the capabillities of
customers sign up or physical assets change the solution

1This research was co-financed by Innosuisse — Swiss Innovation Agency — project 57765.1 IP-EE: DIGERATI.

Graph-based multi-site PV forecasting The DIGERATI solution

Intuition Main characteristics of DIGERATI:

- CSEM’s data-driven solution relies s - “ . Global approach to make localized “*T
entirely on measured data A, FER SRS, ) forecasts

. R R :“,.--"" ."'o.-é'i"';",;:-':'a-‘.:.' e ; ; p ' .
PV stations can be used as a network SR N A W Fusion of heterogeneous data sources
of virtual weather stations Dty PR [ A" M ol P (PV  power and  meteorological "

By exploiting the spatio-temporal measurements)

relations of the power production data, Robust to real-life data
cloud movements can be forecasted AL Wbt

« Automatic monitoring of data quality |
Core graph forecasting model for all sources (missing data)

p),...p(t+H-1)

 The forecast model is an encoder- | « Dynamic graph approach adds

decoder architecture with graph- MLP robustness to missing data and
convolutional Long-Short-Term- changing sensor network

Memory (GCLSTM) cells? ENCODER W( DECODER - Input data:
geist I Gorsra DR o JL casm | casm | .. . | castm Probabilistic forecasts of the 5%, 50% and

Graph convolutions capture spatial ] 95% quantiles  Past 3 hours of measured data

relations and propagate information in | . . . .
x(t-M) x(t-M+1)  xE—-1) YO  ¥E+D y(t+H—1) « 50% quantile (median) estimate Power at PV nodes

the Spatlal domaln Past PV power Clear sky irradiance . .
taken as the forecast value « GHI, temperature, wind speed and wind
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Sustainable Energy, vol. 13, no. 2, pp. 1210-1220, April 2022. location
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Demonstrator and results
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